Serious Game Development for Vocal Training Session in Speech Therapy

Edwina Dwi Sadika1, Gradiyan Budi Pratama1, Xiaopeng Yang1, Younggeun Choi1, Hayoung Jung1, Heecheon You1, Boyoung Park2, Minjung Yu3, Myoung-Hwan Ko3, Jongwan Park3

1Department of Industrial and Management Engineering, Pohang University of Science and Technology, Pohang, 37673
2Humanopia, Inc., Pohang, 37673
3Medical Device Clinical Trial Center, Chonbuk National University Medical School, Jeonju, 54896

ABSTRACT

Objective: This study was intended to develop serious games for vocal training session in speech therapy, which consists of voice continuity, loudness, and pitch training modules. Background: Serious games have started to be used in many purposes including health treatment. In speech therapy, serious games can help to maintain patient’s motivation and commitment. System Feature: Various games were developed for each module to keep patients’ interest. Therapists may determine variables such as duration, repetition, targeted loudness, and pitch levels of a game according to patients’ capabilities and disorder levels. In order to help therapists examine patients’ performance and evaluate their speech improvement, our application was equipped by database. Discussion: Clinical tests to evaluate the clinical effectiveness of our serious games on vocal training therapy is needed. We intend to compare patients’ speech improvement using speech therapy with serious games to conventional speech therapy.

Keywords: Speech therapy, Serious game, Vocal training

1. Introduction

According to American Speech Language Hearing Association, people with speech disorders are unable to produce speech sound correctly or fluently. They have difficulty in pronouncing sound, articulation, and stuttering when they speak. Speech disorders can be classified to Apraxia, Dysarthria, Stuttering, Voice Disorder, Orofacial Myofunctional Disorder, and Speech Sound Disorder. Speech therapy for vocal disorder purpose consists of training muscle movement, controlling rate of speech, and improving breath support.

Conventional speech therapy has limitations, both in patient and therapist point of view. Existing speech therapy has limitations in maintaining patient motivation and attention during the session. Therapists also found difficulty in organizing the therapy result to be analyzed. Moreover, speech therapists have to face various speech disabilities with different levels of severity as well. (Glykas et al., 2004). Therapy parameters have to be easily controlled by a therapist, depending on patient needs (Glykas et al., 2004).

Serious games have started to be applied in many areas including health. Voravika Wattanasoontorn, et al. (2013) grouped serious game purpose for health into health monitoring, health detection, treatment & therapy, and rehabilitation. A.A. Navarro-Newball, et al. (2014) developed video game supported speech therapy named “Talking to Teo” which was designed for Colombian Spanish. Game for therapy has positive response from the patient and therapist because it can maintain attention and enthusiasm. However, some games still have problem in term of flexibility of its difficulty level adjustment. Suzanne N. King, et al. (2012) developed entertainment video game for voice therapy and found that the game was too difficult for the user.

This study was intended to develop serious games for
vocal training session in speech therapy. We developed an application consists of the game in three different categories: voice continuity, loudness, and pitch training modules. Those games are designed for Korean patient.

2. Serious Game Development

2.1 System architecture

The proposed serious game was developed as a tool for both patient and therapist in speech therapy session. The aim of this program is building a motivating and effective speech therapy for the patient. Proposed application is not aiming to substitute the speech therapist, but to help the therapist in planning, executing, and evaluating the therapy session.

Our system provides three categories of vocal training game, which is continuity, loudness, and pitch. The patient may conduct a therapy session with therapists’ guidance. The system records the result of each session. The therapist may determine variables of the games according to patients’ capabilities and disorder level. Therapist may access database to assess patients’ improvement.
2.2 Therapy requirement

Continuity game requires players to make voice continuously. Continuity training might help improvement of controlling how long they need to make voice. For continuity games, the therapist may adjust duration (how long patient needs to make voice continuously). The therapist can also determine the repetition (how many times games will be conducted). Before the game is played, therapist may adjust minimum loudness target easily by comparing with real time voice recorded.

The purpose of loudness training is to train player produce a certain level of voice intensity. The loudness range target can be determined by the therapist. Besides that, the therapist may set duration, which determines how long a patient needs to make certain voice loudness.

Pitch training games are presented to help patient to increase their accuracy and precision in producing a particular level of pitch. Producing and controlling the voice pitch is important for intonation in speech. Need to be considered that the therapy patient may vary in age and gender, which means each user may have different pitch range. In pitch game, the therapist might choose a pitch range, which patient needs to train. Three pitch range choices provided according to normal pitch used in speech.

2.3 Application development procedure

Application development begins with game scenario development. Various game scenarios are provided for each game category in order to overcome boredom in playing one scenario all the time. Different scenario ideas were developed, including sports, traditional Korean games, as well as modern-theme inspired games. We present five different scenarios for each game category. Each scenario was developed under the guidance of medical doctors from Medical Device Clinical Trial Center, Chonbuk National University Medical School.

After the scenario development was done, we proceeded to design and programming phases. Design phase covers the development of characters and objects needed in every game. Game establishment was conducted using Unity3D game development engine and C# programming language. However, it is difficult to have a perfect system only in one straight flow of work, therefore, trial and revision phase is absolutely needed. This cycle of development process repeated several times until we come up with the game, which will be proceeded for clinical testing.
3. Discussion

This study aims at making a serious game for speech therapy, which has the features needed by both of patient and therapist to conduct an effective therapy session. More specifically, the game was intended for vocal training session in speech therapy. Designing serious game for speech therapy should consider the difficulty level and appropriate material. The difficulty level of games can be adjusted according to patients’ capabilities and disorder level.

Using serious game in speech therapy session will help maintain patients’ motivation. Various game will keep patients interest to conduct therapy.

Clinical test to evaluate the clinical effectiveness of our serious games on vocal training therapy is needed. We intend to compare patients’ speech improvement using speech therapy with serious games to conventional speech therapy. Besides that, we can compare our serious games with other existing serious games for speech therapy.

Acknowledgements

This paper was supported by the Biomedical Research Institute Fund, Chonbuk National University Hospital.

References

Glykas, Michael et al., Technology assisted speech and language therapy, Journal of Medical Informatics 73, 529-541, 2004.

Saz, Oscar et al., Tools and Technologies for Computer-Aided Speech and Language Therapy, Speech Communication 51, 948-967, 2009.

Author listings

Edwina Dwi Sadika: edwinasadika@postech.ac.kr
Highest degree: B.S., Department of Industrial Engineering, Bandung Institute of Technology (ITB)
Position title: M.S. Candidate, Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH)
Areas of interest: Ergonomic product design & development, Macro ergonomic

Gradiyan Budi Pratama: gradiyan@postech.ac.kr
Highest degree: B.S., Department of Industrial Engineering, Bandung Institute of Technology (ITB)
Position title: M.S. Candidate, Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH)
Areas of interest: Ergonomic product design & development, Macro ergonomic

Xiaopeng Yang: yxp233@postech.ac.kr
Highest degree: Ph.D., Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH)
Position title: Post Doctors, Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH)
Areas of interest: User-centered product design, Usability testing, Medical image processing, Ergonomic medical system development

Younggeun Choi: sidek@postech.ac.kr
Highest degree: M.S., Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH)
Position title: Ph.D. Candidate, Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH)
Areas of interest: Ergonomic product design & development, Universal design, User experience design

Hayoung Jung: niceterran36@postech.ac.kr
Highest degree: B.S., Department of Industrial and Media Design, Handong Global University
Position title: M.S. Candidate, Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH)

Areas of interest: Ergonomic product design & development, Ergonomic medical system development, User centered design

Heecheon You: hcyou@postech.ac.kr

Highest degree: Ph.D., Department of Industrial Engineering, The Pennsylvania State University, PA, USA

Position title: Professor, Department of Industrial and Management Engineering, Pohang University of Science and Technology (POSTECH)

Areas of interest: Ergonomic product design & development, User interface design & evaluation, Digital human modeling & simulation, Human performance & workload assessment, Work-related musculoskeletal disorders (WMSDs) prevention, Usability testing

Boyoung Park: sarahpark87@humanopia.co.kr

Highest degree: M.S., Department of Digital Management of Technology, Hoseo University

Position title: Researcher, Humanopia Inc.

Areas of interest: Ergonomic product design & development, UI & UX design, Usability evaluation

Minjung Yu: mjyu@mdctc.or.kr

Highest degree: M.S., Department of Medical Science, Chonbuk National University

Position title: Manager, Medical Device Clinical Trial Center, Chonbuk National University Hospital

Areas of interest: Clinical trials for medical device

Myoung-Hwan Ko: mhko@jbnu.ac.kr

Highest degree: M.D., Ph.D., Department of Physical Medicine and Rehabilitation, Chonbuk National University Medical School

Position title: Director, Medical Device Clinical Trial Center, Chonbuk National University Hospital

Position title: Professor, Chonbuk National University Medical School

Areas of interest: Brain Neuro-Rehabilitation, Clinical trials for medical device

Jongkwan Park: rain@jbnu.ac.kr

Highest degree: Ph.D., Department of Urology, Chonbuk National University Medical School

Position title: Professor, Chonbuk National University

Areas of interest: Clinical trials for medical device